Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae.
نویسندگان
چکیده
A diploid Saccharomyces cerevisiae strain was constructed in which the products of both homolog recombination and unequal sister chromatid recombination events could be selected. This strain was synchronized in G1 or in G2, irradiated with X-rays to induce DNA damage, and monitored for levels of recombination. Cells irradiated in G1 were found to repair recombinogenic damage primarily by homolog recombination, whereas those irradiated in G2 repaired such damage preferentially by sister chromatid recombination. We found, as have others, that G1 diploids were much more sensitive to the lethal effects of X-ray damage than were G2 diploids, especially at higher doses of irradiation. The following possible explanations for this observation were tested: G2 cells have more potential templates for repair than G1 cells; G2 cells are protected by the RAD9-mediated delay in G2 following DNA damage; sister chromatids may share more homology than homologous chromosomes. All these possibilities were ruled out by appropriate tests. We propose that, due to a special relationship they share, sister chromatids are not only preferred over homologous chromatids as substrates for recombinational repair, but have the capacity to repair more DNA damage than do homologs.
منابع مشابه
Trying to Avoid Your Sister
Connections between chromosomes are essential for their accurate segregation during cell division. In somatic cells dividing by mitosis, newly replicated sister chromatids are connected by cohesin proteins. When the sister chromatids become attached to microtubules emanating from opposite poles of the spindle, cohesins resist the pulling forces and the ensuing tension stabilizes the chromatid–m...
متن کاملIdentification of Putative Mek1 Substrates during Meiosis in Saccharomyces cerevisiae Using Quantitative Phosphoproteomics
Meiotic recombination plays a key role in sexual reproduction as it generates crossovers that, in combination with sister chromatid cohesion, physically connect homologous chromosomes, thereby promoting their proper segregation at the first meiotic division. Meiotic recombination is initiated by programmed double strand breaks (DSBs) catalyzed by the evolutionarily conserved, topoisomerase-like...
متن کاملThe homologous chromosome is an effective template for the repair of mitotic DNA double-strand breaks in Drosophila.
In recombinational DNA double-strand break repair a homologous template for gene conversion may be located at several different genomic positions: on the homologous chromosome in diploid organisms, on the sister chromatid after DNA replication, or at an ectopic position. The use of the homologous chromosome in mitotic gene conversion is thought to be limited in the yeast Saccharomyces cerevisia...
متن کاملDouble-strand breaks arising by replication through a nick are repaired by cohesin-dependent sister-chromatid exchange.
Molecular studies on double-strand break (DSB) repair in mitosis are usually performed with enzymatically induced DSBs, but spontaneous DSBs might arise because of replication failures, for example when replication encounters nicks. To study repair of replication-born DSBs, we defined a system in Saccharomyces cerevisiae for the induction of a site-specific single-strand break. We show that a 2...
متن کاملSister chromatid cohesion is required for postreplicative double-strand break repair in Saccharomyces cerevisiae
The repair of DNA double-strand breaks by recombination requires the presence of an undamaged copy that is used as a template during the repair process. Because cells acquire resistance to gamma irradiation during DNA replication and because sister chromatids are the preferred partner for double-strand break repair in mitotic diploid yeast cells, it has long been suspected that cohesion between...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 132 2 شماره
صفحات -
تاریخ انتشار 1992